Switching Power Supply Type SPD 240W 3 phases DIN rail mounting

Product Description

The Switching power supplies SPD series are specially designed to be used in all automation application where the

Approvals

- Universal AC 3 phases input full range
- Installation on DIN rail 7.5 or 15 mm
- PFC as standard
- High efficiency up to 90%
- Power ready output
- Parallel connection feature
- Compact dimensions
- UL, cUL listed and TUV/CE

Input type: $3=$ three phase
(or single phase 400/500VAC ${ }^{3}$)
C \&

Output performances

Model	Rated output Voltage (VDC)	Output Power (W)	Output Current (A) ${ }^{11}$	Voltage Trim Range ${ }^{2)}$		DC OK Thereshold at startup (VDC)		DC low LED Thereshold after startup(VDC)		Typical Efficiency
				Min. VDC	Max. VDC	Min.	Max.	Min.	Max.	
SPD24	24	240	10 (7.5)	22.5	28.5	17.6	19.4	17.6	19.4	89\%
SPD48	48	240	5 (3.75)	47.0	56.0	37.0	43.0	37.0	43.0	90\%

${ }^{1)}$ When powered with three phases input; with biphase input value is in the brackets.
${ }^{2}$) When S/P switch is set to parallel, it is not possible to trim output voltage.

Output data

Line regulation	$\pm 1 \%$	Temperature Coefficient	$+0.02 \% /{ }^{\circ} \mathrm{C}$
Load regulation		Hold up time Vi = 230VAC	20 ms
Parallel mode	$\pm 5 \%$	Minimum load	0\%
Non parallel mode	$\pm 1 \%$	Parallel Operation (only with S/P switch on "P" position)	2 units max.
Ouput Voltage accuracy	from 0 to $+1 \%$ (factory adjusted)		
Ripple and Noise	100 mV		

Input data

Rated input voltage	400/500VAC	Frequency range	$47-63 \mathrm{~Hz}$
Voltage range		Inrush current	10A
AC in DC in	$\begin{aligned} & \left.340-575 V A C^{3}\right) \\ & 480-820 V D C \end{aligned}$	P.F.C. (Vi= 500VAC, lo nom.)	0.6
Rated input current (380/500)	0.85A / 0.7A		

[^0]
Controls and Protections

Input Fuse	2.0A/600VAC internal/phase ${ }^{4}$	Power ready output (only SPD 24)	
Overvoltage ProtectionSPD24 SPD48	$\begin{aligned} & 30-33 V D C \\ & 60-68 V D C \end{aligned}$	Threshold voltages Contact rating at 60VDC	$\begin{gathered} 17.6-19.4 \mathrm{VDC} \\ 0.3 \mathrm{~A} \end{gathered}$
Output Short Circuit Continous	Current limit	Overtemperature	$100-110^{\circ} \mathrm{C}$
Rated Overload Protection	115-135\%		(shutdown with auto-restart when temperature is back to normal)

General data (@ nominal line, full load, $\mathbf{2 5}^{\circ} \mathrm{C}$)

Ambient temperature	$-25^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$	Cooling	Free air convection
Derating ($>61{ }^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$)	$2.5 \% /{ }^{\circ} \mathrm{C}$	MTBF (MIL-HDBK-217F)	n.a.
Ambient humidity	20-95\%RH	Case material	Metal (powder painted aluminium)
Storage temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Weight	$1.1 \mathrm{Kg} / 38,80 \mathrm{oz}$
Dimensions L x W x D Screw terminal type	$\begin{aligned} & 123.6 \times 89.0 \times 110.7 \mathrm{~mm} \\ & 4.87 \times 3.50 \times 4.36 \text { inches } \end{aligned}$	Protection degree	IP20

Approvals and EMC

Insulation voltage I/O	3.000 VAC	CE	EN61000-6-3 EN55022 class B EN61000-3-2 EN61000-3-3 EN61000-6-2 EN55024
Insulation resistance I/O @ 500VDC	100M Ω		
UL / cUL	UL508 listed, UL60950-1, Recognized		
TUV	EN60950-1		

Block diagrams

Pin assignement and front controls

Pin No.	Designation	Description
$\mathbf{1}$	$\mathbf{V +}$	Positive output terminal
$\mathbf{2}$	$\mathbf{V}+$	Positive output terminal
$\mathbf{3}$	$\mathbf{V}-$	Negative output terminal
$\mathbf{4}$	$\mathbf{V}-$	Negative output terminal
$\mathbf{5}$	GND	Ground terminal to minimise High frequency emissions
$\mathbf{6}$	L1	Input terminals
$\mathbf{7}$	L2	Input terminals
$\mathbf{8}$	L3	Input terminals
$\mathbf{9}$	RDY	A normal open relay contact for DC ON level control
$\mathbf{1 0}$	RDY	A normal open relay contact for DC ON level control
	DC ON	DC output ready LED
	DC LO	DC low indicator LED
	Vout ADJ.	Trimmer for fine output voltage adjustment
	S/P	Single / Parallel select switch

Installation

Ventilation and cooling	Normal convection All sides 25mm free space for cooling is recommended
Screw connections	$10-24 \mathrm{AWG}$ flexible or solid cable 8 mm stripping recommend
Max. torque for screws terminals	
Input terminals	$1.008 \mathrm{Nm}(9.0 \mathrm{lb}-\mathrm{in})$
Output terminals	$0.616 \mathrm{Nm}(5.5 \mathrm{lb}-\mathrm{in})$

Derating Diagram

Mechanical Drawings mm/inches

[^0]: ${ }^{3}$) Biphase or triphase input (biphase can be: L1 L2, L2 L3 or L1 L3. Note: when used as biphase, the maximum output power is 75% of rated power.

